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MODEL FOR PREDICTION OF POINT EFFICIENCIES

FOR MULTICOMPONENT DISTILLATION

By R. KRISHNA (MEMBER)
Indian Institute of Petroleum, Dehra Dun 248005, India

This paper presents a model for the calculation of Murphree point efficiencies in distillation on non-ideal multicomponent fluid
mixtures from information on tray hydrodynamics and diffusivity data for the constituent binary pairs in the mixture. A
two-zone model is used to describe the hydrodynamic behaviour of the tray. Zone I consists of a formation zone, just above
the tray floor, with the gas issuing as a cylindrical gas jet through the perforations. Above this zone is the bulk froth zone,
Zone I1, where the gas is dispersed in the form of rigid spherical bubbles of varying size populations. The interfacial mass
transfer rate relations are based on the generalized Maxwell-Stefan diffusion equations and take proper account of differences
in the binary pair Maxwell-Stefan diffusion coefficients in the vapour and liquid phases. Non-equimolar transfer effects are
taken into account by invoking an energy balance at the vapour-liquid interface.

Calculations based on the model are used to demonstrate the strong influence of froth hydrodynamics (bubble sizes, size
distributions and rise velocities) on the relative values of the component efficiencies. Using a particular example for distillation
of ethanol—tert butanol-water, it is shown depending on the bubble size and residence time, the efficiency of zert butanol,
could attain efficiency values in the range —20% to +50%. Channelling of the gas phase via fast-rising bubbles is also shown
to have an effect on the extent of diffusional coupling experienced in the system.

The model developed in this paper could form the basis of an a priori method for the estimation of multicomponent distillation

efficiencies.

INTRODUCTION

Though distillation occupies a position of pre-eminence
amongst industrially used separation processes, there is
still a lack of fundamental understanding concerning the
interphase mass transfer behaviour on distillation trays.
Industrially used design procedures usually proceed via
the equilibrium stage calculations and departures from
equilibrium are later incorporated by the use of an
overall column efficiency; witness the recently expressed
industrial view point by McEwan and Darton'. Such a
procedure has little fundamental basis because for multi-
component distillation the mass transfer efficiencies of
individual components, on any given tray, will be
different from one another and these values will vary
from one tray to the next’. In fact, to the author’s
knowledge the first published realisation of multi-
component distillation behavior dates back to 1941
when Walter and Sherwood?, on the basis of an extensive
experimental study of Murphree vapour and liquid plate
efficiencies for absorption, desorption and rectification
operations, concluded that “the results indicate that
different efficiencies should be used for each component
in the design of absorbers for natural gasoline and
refinery gases”.

Toor**%7 was amongst the first to provide a theor-
etically based model for calculation of multicomponent
distillation efficiencies. In an interesting computational
study, Toor and Burchard® showed with the aid of a
sample design problem with the system methanol-iso-
propanol-water that neglect of differences in component
efficiencies could lead to severe underdesign. Toor’s
work served to kindle experimental and theoretical
interest in this area and confirmation has been obtained
on many of the theoretical predictions, see the fairly
complete literature surveys of Krishna®®. The most
dramatic experimental results, in the opinion of the
author, are with the system ethanol-tert butanol-water’

for which it was observed that the -component point
efficiency of tert butanol exhibited efficiency values,
under similar hydrodynamic conditions, E$' > 1009, and
ES' < 0%, This bizarre, un-binary like, behaviour of tert
butanol could be rationalized on the basis of multi-
component mass transfer formulations based on the
Maxwell-Stefan diffusion equations?. It is interesting to
remark that the un-binary like behaviour of the system
ethanol-tert butanol-water was also observed during
distillation in a completely different apparatus: a wetted-
wall column®, lending unequivocal confirmation of the
interphase mass transfer models.

The analyses of multicomponent mass transfer on
distillation trays have thus far concentrated on the
setting up of the interphase mass transfer rate relations,
using grossly simplified “black-box”’ type models for the
tray hydrodynamics; see for example the recent paper by
Burghardt et al.”’. In recent years considerable progress
has been made on understanding the influence of hydro-
dynamics on the efficiency of binary mixtures; see for
example the recent papers by Lockett et al.'®'. In
particular, the influence of bubble size distribution and
gas channelling on binary tray efficiency has been noted
as being of paramount importance!'®, It would perhaps
not be out of place to point out that the deleterious effect
of bubble size distribution on the mass transfer per-
formance of bubble columns and gas fluidized beds,
especially operating in the churn-turbulent regime, has
long been appreciated and have been modeled with the
help of the “two-phase” theory'®!"!® in which the fast-
rising bubble population is considered as the “dilute”
phase. Tray hydrodynamics has not yet been tackled
with the “two-phase” theory.

In the present communication we focus attention on
the influence of tray hydrodynamics on the component
efficiencies in multicomponent distillation. The analysis
is restricted to the free-bubbling regime of operation of
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tray columns. Work is in progress to extend the treat-
ment to the spray regime of operation. It is in the free
bubbling regime that the analogy with the churn-
turbulent flow of fluid beds is particularly striking.
The ensuing analysis is limited to the determination of
point efficiencies in non-ideal n-component mixtures;
liquid mixing effects, liquid channelling, liquid entrain-
ment and vapour mixing effects are not considered.

INTERPHASE MASS TRANSFER RATE
RELATIONS

Consider the mass transfer process between the
vapour and liquid phases at any given position within
the vapour-liquid dispersion (froth) on the tray. In this
section we shall develop the proper form of the rate
relations, postponing to the next section, the question of
the estimation of the appropriate transfer coefficients.

The diffusion process is most conveniently described
by the generalized Maxwell-Stefan diffusion equations.
Consider first the diffusion within the non-ideal liquid
phase. The Maxwell-diffusion equations for the n-
component mixture'” can be written as

xN, — x;N,
—V = i=142...,n 1
RT Tpli = jgl ctpij' g l ( )

j#i

Due to the Gibbs-Duhem relationship
2 %V =0 2
i=1

only n — 1 of the equations (1) are independent and so
to determine the n interfacial fluxes N; we need to
supplement equation (1) with an additional relationship.
This additional relationship is provided by an energy
balance at the interface’®?, which simplifies to

3 NiA=0 3)
i=1

for the case where temperature equilibration is rapid, as
is the case for distillation tray operations. When the
molar latent heats of vaporization of the individual
species:

h=H'-H, i=12...,n, )

are equal to one another the relation (3) degenerates to
the requirement of equimolar counter transfer:

n
N.=Y N=0, ®)
i=1
a condition almost always implicitly assumed in text-
book treatments of the subject of distillation mass
transfer; see for example King®. It has been pointed out
that the approximation (5) could lead to large errors in
some cases of multicomponent transfers®?'; we therefore
recommend the routine use of the more general re-
lationship (3).

The energy balance relation (3) enables us to “elimi-
nate” the nth flux N, from the relations (1) and the
further analysis is facilitated if we express the n — 1
independent equations (1) in » — 1 dimensional matrix
notation:

(N) = —c[B][B]"'[T](Vx) ©)
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where we introduce three separate coefficient matrices,
each of dimension n — 1 x n — 1 as follows:
(1) a bootstrap matrix [B], with elements

Bij=5ij.—xi[xz j‘ﬂ]’ i,j=1,29“-9n_1 (7)
: Zl x;;

i=
This matrix portrays the non-equimolar transfer char-
acter of the process considered. When the constituent
molar latent heats of vaporization are close to one
another, the bootstrap matrix [8] degenerates to the
identity matrix [I}:

[B1=[] (equimolar transfer) ®)

(2) the matrix [B] of the inverted Maxwell-Stefan
diffusion coefficients with the elements

.xi 7 xk .
Bi=—+ ) —, i=12...,n-1 9
Bin kglpik ()
k#i
1 1 .
By= —x; 2. D) Lji=12,...,n—1 (10)
i Pul gy

which are calculable from information on the pair
diffusivities D ;. For ideal vapour mixtures the D are
identical to the Fickian binary diffusion coefﬁment in
the binary mixture i —;j and can be estimated from the
semi-empirical models based on the kinetic theory of
gases”. It is interesting to note that for ideal vapour
mixtures while the binary pair diffusivities are indepen-
dent of composition, use of the formulation (6) for
n-component transfer, renders the multicomponent
diffusion coefficient matrix [B]™! composition dependent.
For non-ideal liquid mixtures the pair diffusivities D

are composition dependent, even for binary mixtures.
For binary mixtures, the D; show a much simpler
dependence on the composmon than the corresponding
Fickian diffusivity, as shown by Vignes*, who suggested
the following rule for the prediction of B,J from the two
infinite dilution coefficients B} and Bj:

=(D? 5(P )% (binary mixture) (1)

The 1nﬁn1te dilution coefficients D§ and B can be
estimated by the methods discussed in Reid et al.”.

For n-component mixtures, the methods for pI‘CdlC-
tion B are still under development; see for example the
references (25-27). In the absence of reliable prediction
procedures we recommend the followmg generalization
of the Vignes relationship:

ij = ( D g)(x,/(x, +x,))(9 J{:)(xa/(xi + xj)),
Lj=1,2,...,n—1 (12)

Our unpublished calculations indicate that the above
relationship (12) is of adequate accuracy for engineering
design purposes.

Let us now examine some limiting forms of the matrix
[B]. When the components making up the mixture are
similar in size and nature and the mixture is nearly
thermodynamically ideal, then the pair diffusivities B
become nearly equal to one another and the matrix [B]
degenerates to the form:

(B]=5"'[1] 13)
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which will be a good engineering approximation for
close-boiling hydrocarbon mixtures. Indeed, measure-
ments of the diffusion coefficients in the ternary system
toluene—chlorobenzene—bromobenzene® show that the
diffusion process can be characterized by one character-
istic diffusion coefficient B. For non-ideal mixtures
made up of components of differing size, nature, polarity
and hydrogen bonding characteristics the pair D
typically vary by a factor of four. We do not therefore
recommend the use of a single diffusivity to describe the
transfer behaviour in either fluid phase.

Another limiting case of interest is when one com-
ponent, say component 1, in the mixture is present in
vanishingly small concentrations. In this case the re-
lations (6), (9) and (10) reduce to

Nl = —ClBﬁlel (14)

where B,, is calculated from the infinite dilution
coefficients as follows:

Bl (15)

(3) The last of the three coeﬁic1ent matrices is [T}, the
matrix of thermodynamic factors with elements -

3 In (3,x; )

rij=xim=5ij+xialn%

0x; 0x;:
Lj=1,2,...,n—1 (16)

The elements T'; can be calculated from the non-ideal
solution model used to describe the vapour-liquid equi-
librium data, for example the models of Wilson, NRTL
and UNIQUAC could be used for this purpose?. In the
absence of experimental data on the Wilson, NRTL or
UNIQUAC parameters, the UNIFAC group contribu-
tion method could be used to provide estimates of I';*.

For thermodynamically ideal systems the matrix [I']
degenerates to the identity matrix:

[[1=[1] (thermodynamically ideal mixture) (17)

We see from the above that the interphase mass
transfer process in multicomponent systems is character-
ized by three coefficient matrices: [f], [B] and [I],
reflecting, in turn, non-equimolar transfer behaviour,
differences in constituent binary pair diffusivities B ;; and
departures from thermodynamic ideality. For the triply
special case of equimolar transfer in an ideal gas mixture
made up of species of similar size and nature we see that
the relations (6) degenerate to

N, = —c¢, D Vx, (very special case) (18)

which is the simplest form of Fick’s law generalized to
multicomponent mixtures. The thrust of the present
communication is to analyse the many practical situ-
ations where the simple relation (18) is not adequate
even for gross engineering design purposes. The general
analysis will help to identify situations where departure
from (18) can be expected to be serious.

The solution of the constitutive relations (6) together
with equations of continuity

i=1,2...,n—1 (19)

to obtain the composition profiles and fluxes N is a

formidable problem. An exact solution is possible for
steady-state diffusion of ideal gas mixtures across a
“film”**!. Krishna* has suggested a generalization of the
ideal gas film model to other situations of practical
interest. This is the latter approach we recommend and
summary of the procedure for the estimation of the
interfacial fluxes N, is given below.

Firstly, it is assumed that for the hydrodynamic
description of the particular phase under consideration,
the diffusion equations can be solved for the correspond-
ing situation in a binary mixture under the conditions of
equimolar transfer, a few such solutions are discussed in
the next section. For example, for diffusion in the liquid
phase on a tray the penetration model solution for
binary mass transfer is given by

k =2D"?[(nt)' (20)

where k is time-averaged binary mass transfer coefficient
and ¢ is the vapour-liquid contact time. The binary
solution (20) can be used to calculate the pair mass
transfer coefficient k; in a multicomponent mixture,
thus:

ky=2B P [(t)?, ij=1,2,...,n Q1)

where we use the Maxwell-Stefan pair diffusivity D in
place of the Fickian binary diffusivity in the binary
solution (20).

Once the binary pair mass transfer coefficients have
been estimated the next step is to calculate the matrix of
inverted mass transfer coefficients [R] whose elements
are given by

X X .
— 1 e — 22
~L ;k ,2,...,n—1 (22)
J#i
_ 1 1
Rj=— (k—-k—), L,j=12,...,n-1 (23)
G #))

where %, denotes an average composition (say the arith-
metic average) between the bulk fluid phase (x;) and the
interface (x;).

The interfacial fluxes N; (i =1, 2, ...,
given by

(V)= c BRI (x —x) (24)

where the superscript 1 is introduced to distinguish the
liquid phase. The matrices [B] and [[] are evaluated
using equations (7) and (16) at the average compositions
x;. Equation (24) represents an approximate solution to
the generalized Maxwell-Stefan equations and has
proved to be of good accuracy for the problem of
distillation mass transfer**. The use of the approxi-
mation (24) also avoids the trial-and-error solution
required for the exact model®.

Equation (24) describes the transfer process in the
liquid phase (N, is considered positive for transfer from
bulk liquid phase to the vapour-liquid interface). Fol-
lowing an exactly parallel development for the vapour
phase we may derive the following relationship

N =cl[-BIRT' G —y) 249

where y, and y,, denote the vapour phase compositions

n — 1) are then
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in the bulk and interface respectively. In deriving (24) we
have taken [I'] = [I].

In distillation operations only the bulk phase com-
positions x; and y; are accessible via material balance

relationships. We need fo eliminate the unknown inter-’

facial compositions x;, and y.. To achieve this we
proceed as follows.

Firstly, the vapour-liquid equilibrium relationship
requires to be linearized over the composition range of
interest. We write

Z aLx +b, i=1,2,...

yn—1 (25)

From the deﬁnltion of activity coefficients y;, we have

y¥=vxpllp, i=12,...,n (26)

Differentiating equation (26) with respect to x; we
obtain after some manipulations

o =KaTy, ij=1,2..,n—1 QN
6x

where K{1 is the K-value:
K=y*x,=ypdp, i=12,....,n—1 (28)

It is interesting to note that the thermodynamic
factors T, whose elements are given by equation (16)
arise naturally in two entirely different contexts: descrip-
tion of non-ideal diffusion and of (linearized) vapour—
liquid equilibrium.

Combining equations (25) and (27) we obtain the
linearized vapour-liquid relationship in the usable form

0*) =K (x) + () (29)

where [K®] is a diagonal matrix of equilibrium K-values.
y#¥ is the composition in equilibrium with the bulk liquid
phase of composition x;. At the interface we have the
equilibrium relationship

o) = [K[T(x) + (b) (30)

Equations (29) and (30) are required to eliminate the
interface compositions and derive the addition of resist-
ances formula for multicomponent systems. It is how-
ever necessary to proceed with more caution than with
the corresponding binary mass transfer problem so as
not to violate the rules of matrix algebra.

Equation (24) is re-written in the form

(e —x) = [T [RIBI' (W)/ey @31

Pre-multiplying equation (31) by [K*][I] and intro-
ducing the equations (29) and (30) we obtain

O* — yo) = KT [RBT(N) et (32
which relation can be further simplified because
()~ = (32a)

It is interesting to note the cancellation of the matrix of
thermodynamic factors[I"']. Any errors inherent in the
linearization of [I'] by calculation at the average com-
position X; are not critical because of the cancelling
effect. This simplification only results if the approxi-
mation suggested by Krishna** is adopted. It is to be
stressed here that the above simplification will not be
obtained if the linearized theory of Toor®’ or Stewart
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and Prober® is adopted. The latter theories involve
diagonalization of the matrix [B]![I'] and require the
calculation of dy; /8x using equation (27). Our recom-
mended procedure given above requires evaluation of

“the equilibrium K-value, K{4, for the composition range

of interest, a much simpler task.
Introducing (32a) into equation (32) we get

O* = y) = [K<[RT[B] (N)/er (33)
Writing equation (24) in the form
0. —»)=[R1BTI ' (N)/ei (34)

and adding equations (33) and (34) we obtain

O*=y= [[7?“] +—i—;v- K] [1—3'][3']"'[BV]][B"]“(N)/CY
35)

Let us now define the overall matrix of inverted vapour
phase mass transfer coefficients [R®'] by

[R*)= (R} + & (KRBT BY

With the definition (36) we can calculate the interfacial
fluxes N; from

(V) =c{[BIR*T'0* —») 37

Equations (36) and (37) are the working relations for
the calculation of the fluxes N,. We take up next the
question of the estimation of the pair mass transfer
coefficients Kj; required in the calculation of the matrices
[R] and [RY] usmg equations (22) and (23).

(36)

Tray Hydrodynamics and Estimation of
Mass Transfer Coefficients

In order to estimate the pair mass transfer coefficients
k;; in both vapour and liquid phases, to allow calculation
of [R®'], we first need to model the tray hydrodynamlcs
The vapour-liquid dispersion on the tray is described by

- a two-zone model. In Zone I, just above the tray floor,

is the bubble formation zone and is represented by
cylindrical gas jets issuing from the holes in the tray.
Above this Zone I, is the bulk froth zone in which the
vapour is dispersed in the form of rigid spherical bubbles
in various size populations. Above this Zone II, will in
practice be a splash zone but the interfacial area for mass
transfer must be expected to be an order of magnitude
lower than in Zones I and II and therefore excluded in
the present treatment. We now consider the mass trans-
fer processes in the two zones I and II, in turn.

Zone I: Formation Zone

At the level of attack in this paper we consider the
liquid phase to be well mixed in the vertical direction and
in Zone I, this liquid phase will be in contact with a gas
jet in the form of a cylindrical jet. The transient diffusion
equation for a binary mixture under conditions of
equimolar transfer, can be solved analytically and the
solution is available in Crank®. In the vapour phase the
time-average mass transfer coefficient kf is given by

v

_ 1 N Bu o
kY= P [mglj?nexp< Fo, B,,f )] (38)
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where j,, represents the roots of the Bessel function
Jo(j) = 0. The Fourier number Fo, is defined by

4D ¢t

Fop=—2t1 (39)
di

where d, is the diameter of the cylindrical gas jet and 4

is the gas residence time:
U

hy is the height of the formation zone and U; represents
the (absolute) velocity of the vapour in the jet.

We have used a reference diffusivity D¢ in the
definition of the Fourier number because as we shall see
later this number describes the hydrodynamic influence
on the mass transfer in the gas phase in a convenient
manner. The parameter af represents the interfacial area
per unit volume of (dispersed) gas and is given by

ay = 4/d,. 41)

Specification of the diameter of the gas jet, dj, the
height of the formation zone, /;, and the absolute vapour
velocity of the vapour through the jet, Uj, serves to
describe the vapour phase mass transfer completely.

Let us now turn to the liquid phase transfer process
in the surrounding (well-mixed) liquid phase. In this case
the penetration model applies and the time averaged
mass transfer coefficient &} is given by equation (21) with
the contact time # as given by equation (40).

4 (40)

Zone II. Bulk Froth Zone

Actually this zone will contain bubbles of a range of
sizes. In our model we shall assume that the bubble size
distributions can be represented by discrete populations,
each population having bubbles of uniform size and
assumed to be rigid spherical bodies. Consider a bubble
of diameter dy;, in the kth population. The transient
diffusion equation for equimolar binary mass transfer
can be solved for this bubble and the time averaged mass
transfer coefficient kj, in the vapour phase, is given by
(36)

1

7
anxhnk

6 2 1 D,
x In [—P Y —3Xp <-—7t2m2Fo,Lk —]—DT’)] 42)

Vo
kij—‘—

m=1 ref,
where the Fourier number Foy, for the kth bubble size
population in Zone II is
4D ety
dh
The gas residence time 7y, is calculable from the height

of the bulk froth zone hy; and the bubble rise velocity
UII,k

Foyy = 43)

foo = hy
k=73 -
Uk

Specification of the bubble diameter, dy;, the bubble
rise velocity, Uy, and the height of the bulk froth zone,
hy, serves to describe the hydrodynamics of the kth
bubble size population, after equations (42)-(44) are
supplemented with the following expression for the

(44)

interfacial area per unit volume of (dispersed) gas:

6
any = ‘d— 45)
Lk

As for the case of Zone 1, the liquid phase transfer
coefficient is adequately described by the penetration
model, with the time averaged mass transfer coefficient
given by equation (21) using the contact time f, as
calculated from equation (44).

Material Balance Relations and Calculation
of Point Efficiencies

Having established the interfacial mass transfer rate
relations and chosen a hydrodynamic model to allow the
calculation of the transfer coefficients in either fluid
phase, it now remains to combine the derived relations
with the material balance equations. We consider the
mass transfer process within the vertical slice pictured in
Figure 1. The bulk liquid phase is considered to be well
mixed within this slice. If G, represents the molar flow of
component i in the vapour phase, the material balance
relationship can be written for plug flow of the vapour
phase as

%i—':NiaA, i=1,2,...,n (46)
where A represents the distance above the tray floor, a is
the interfacial area per unit volume of froth and 4 is the
active tray bubbling area. Introducing the superficial
vapour velocity, U,, based on the active bubbling area,
we may rewrite equation (46) as

d(ciUy»)
dh
Only n = 1 of the equations (47) are independent and

further analysis is conveniently carried out if we express
(47) in n — 1 dimensional matrix notation and combine

=Nia> i=1,2,...,n (47)

A iquid Ay,

-froth

ln‘quu‘d

Y

Figure 1. Schematic diagram of distillation tray. (y)g is the vector of
compositions of vapour entering the vertical slice; (y)g is vector of
compositions of vapour leaving the vertical slice. The liquid is assumed
to be well mixed within the slice considered.

Chem Eng Res Des, Vol. 63, September 1985




MODEL FOR PREDICTION OF POINT EFFICIENCIES 317

with the rate relations (37) to obtain

d(Uy) =
= v Rov -1 * __

- —PBIRT (" —y)a
which differential equation has to be integrated along the
dispersion height to yield the composition of the vapour
leaving the zone. For Zone I, the boundary conditions
are

(48)

h=0, MN=0) G*—¥)=0*—rk 49
h=h, M=0GP*=—y)=0*—rh (50)

where (y)g represents the vector of entering vapour
phase compositions; (y*) is the composition in equi-
librium with the bulk liquid phase composition (x) and
(»), is the composition of the vapour phase leaving Zone
I and entering the bulk froth Zone I1. The mass transfer
resistance matrix in Zone I is [R{"] and is to be calculated
from equations (36) and (38)—(41), using the following
expression for the interfacial area per unit volume of
dispersion:

= agg

(5D

where ¢ represents the hold-up of the vapour phase in
Zone I. In the general case numerical integration of the
differential equation (48) will be required.

The composition of the vapour entering the kth
bubble size population in Zone II is given by

h=hl’ (J’)=(}’)1y k=1527"',B (52)

We need to set up the differential equation for each of
the individual bubble size populations as follows

d(t, -

% = B[R] 'O* — »uxanx
which requires to be integrated between the entering
condition (52) and the condition at the exit of the kth
population zone II:

h=hy, (y)= \()’u,k)p (54)

The composition of component i in the vapour mixture
exiting zone II is the weighted average of the individual
populations

(53)

B
JiL= Z SV, i=12,....n (55
k=1
where f; is the fraction of the total vapour entering Zone
II which passes up the froth via the kth bubble size
population. This fraction f, is given by

fi= Unxéni
L= Tk
Ui

where g, is the gas hold-up of kth population in Zone
II. It is clear from equation (56) that the major portion
of the gas will be transported through the dispersion by
the fast rising bubble populations, leading to gas chan-
nelling and a deleterious effect on the tray efficiency'""

Once the exiting vapour compositions y;, leaving
Zone 11, are calculated the Murphree point efficiencies of
the individual components can be determined

(56)

o1 ¥ —yh

EY = , i=1,2,...,n
¥ —yde

(57

Chem Eng Res Des, Vol. 63, September 1985

In the general case of non-equimolar transfer the
differential equations (48) and (53) have to be solved
numerically, but a convenient analytic relationship can
be derived for the case of equimolar transfer with the
further assumption of constant [R®] in each of the two
zones. The analytical solution can be best expressed in
the form

O* =y =I210* -k (58)

where the # — 1 x n — 1 dimensional square matrix [Q]
is constructed from the individual zone contributions:

B
[Q]= Z fk[Qn,k] [Q4].
k=1
The Zone 1 contribution is given by

[Q1] = exp [ [R}] ' ait]. (60)
The contribution of the kth population in Zone 1II is

[Ouil = exp [ [RY\] " afiptusl- (61)

The matrix exponentials in equations (60) and (61) can
be evaluated by the use of Sylvester’s theorem?. Due to
differences in the pair mass transfer coefficients k;, in
either fluid phase, the matrices [R°'] will have non-zero
off-diagonal elements and as a consequence the matrix
[@] will have non-zero off-diagonal elements. The con-
sequence of these off-diagonal elements can best be
appreciated by considering the simple example of a
ternary system and writing equation (58) in the form

Ay = OnAyie+ Q1 Ay v (62)

Ayy = Oy Ay + Qn Ay (63)

The Murphree point efficiency for components 1 and
2 are then expressible in the form

Ay
Y =1-0u=Quz >
1E
Ay
Ef'=1-0n—0Oup
2E

The point efficiency of component 3 is related to EY"
and EY":

(59)

(64)

(65

Ay g EY + Ay EY
Ay + Ay

For mixtures made up of components of similar size
and nature, the matrix [R°] will reduce to the form of
a scalar times the identity matrix (cf. discussions follow-
ing equation (17)). In such cases the matrix [Q] will also
reduce to the form Q [I] and it follows from equations
(64)—(66) that ES* = ES' = E{". In the general case with
non-zero off-diagonal elements in [Q], the component
efficiencies E?¥ will be different from one another. It is
also interesting to note the direct influence of the ratio
Ay,g/Ay,e on the values of the component efficiencies.
The ratio Ay,g/Ay,z is determined by the operating
conditions and the vapour-liquid equilibrium relation-
ship; the ratio can be large or small, positive or negative.
Let us examine some of the interesting possibilities.
Suppose Q,, and Q,, are both negative in sign (this is the
case for the system ethanol-tert butanol-water to be
analysed later); the coefficients Q;, and Q,, will always
be of positive sign. For large positive values of Ayg/

EY = (66)
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Ay,g, the efficiency of component 2, ES', could attain
values exceeding unity, i.e. greater than 1009,. On the
other hand for large negative values of Ay /Ay, ES
could assume very small values and under sufficiently
extreme conditions negative values could be obtained.
The unboundedness of component efficiencies in multi-
component systems is in sharp contrast to the corre-
sponding behaviour of binary mixtures for which the
component point efficiency (equal for both components)
must lie between 0 and 1.

In order to demonstrate the utility of the above model
we carry out some calculations for the point efficiencies

E‘): ; MurP%re.\’_. Po;nt efr{c.gncg

08

0.7

0.6

05

03

0.2z

0.0

for the system ethanol (1)-tert butanol (2)-water (3).
The composition of the vapour entering the tray is taken
to be y;z = 0.5558, y5. = 0.1353. The composition of the
vapour in equilibrium with the bulk liquid phase leaving
the tray is (pj =0.6040, y¥ =0.1335. The ratio Ayg/
Ay is calculated to be —26.8 and from the discussion
following equation (66) we should expect the efficiency
of tert butanol to be very small, even negative.

We assume that the tray operates in bubbling
regime; the molecular diffusivities in the vapour and
liquid phases are estimated as shown in an earlier
communication’.

1
05

I:Q“ 3 Fourier number

Figure 2. Murphree point efficiencies for the system ethanol (1)-tert butanol (2)-water (3) as a function of the Fourier number Foy, in the bulk
froth zone. The chosen conditions correspond to Run M46 of Krishna et al’. Mass transfer process is assumed to be gas phase controlled.

21

B =20mm"s
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Figure 3. Variation of —Q,,/Q,, and Q,, (elements of matrix [Q]) as function of the Fourier number Fo, in the bulk froth zone. The chosen
conditions correspond to Run M46 of [2]. The mass transfer process is assumed to be gas phase controlled. B =20 mm?s~".

The molar latent heats of vaporization of the three
species are found to be 4, = 38.7 kJ/mol, 1, = 39 kJ/mol,
A3 = 40.6 kJ/mol. These values are so close to each other
that the bootstrap matrices [8*] and [8'] could be approx-
imated by the identity matrix [I]. In the calculations to
be presented the assumption of equimolar transfer was
therefore adopted and the analytic relations (58)—(61)
were used in the determination of the point efficiencies
E.

It is anticipated that most of the transfer process takes
place in the bulk froth zone. Before attempting to use the
complete two zone model, we shall first demonstrate
some interesting features concerning the influence of the
bubble sizes on the values of the component efficiencies.
To do this we initially assume that the formation zone
is of negligible importance and that the bulk froth zone
consists of uniformly sized spherical bubbles. Further,
anticipating the results to be presented later, we assume
that the mass transfer process is completely controlled
by the resistance in the vapour phase, i.e. [R®] =[R"].
With the above set of assumptions, examination of the
equations (42) and (61), shows that the component
efficiencies are unique functions of Foy. Figure 2 shows
the variation of E?¥ with Fo;. The components ethanol
(1) and water (2) behave “normally” and the component
efficiencies of these species increases with increasing Foy,.
The component tert butanol (2) on the other hand shows
a completely different behaviour. As Foy is increased
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from 0.01 to 0.03, the efficiency EY' decreases to a value
of —0.15. Increase in Fo,; beyond 0.03 increases E?" till
at Foy = 0.135, the value of ES¥ = 0..Beyond Fo; = 0.135
the value of EY is positive and further increase in the
Fourier number results in “normal” behaviour for tert
butanol. At large values of Foy, equilibrium is attained
and all the component efficiency values reach unity
values. We see that even with the simplified model we are
able to rationalize the observed negative E%'. The de-
crease in EY' between Fo; of 0.01 and 0.03, however,
deserves special comment and explanation. For small
values of Foy, the mass transfer coefficient k}; shows a
square root dependence on the diffusivity. With in-
creasing Foy, the dependence of k on B approaches
the linear (or “film model”) limit. In other words, an
increase in Foy results in an increasing dependence of the
transfer coefficients on the pair D ;; the differences in the
pair D therefore become increasingly important and
the off-diagonal elements Q,,, @,, should show a corre-
sponding increase, relative to the main diagonal ele-
ments Q;; and Q,,. Examination of equation (65) shows
that an increase in the magnitude of Q,,, relative to Q,,,
should decrease ES'; this is in fact observed in Figure 2.
To quantify the above explanation we plot —Q,,/Q,, vs
Foy in Figure 3 and note the increase in this ratio with
increasing Fo;;. We are thus able to explain the behav-
iour exhibited below Fo; = 0.03, for tert butanol. Why
does EY' increase beyond Foy = 0.03? The answer to this
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Figure 4. Influence of liquid phase mass transfer resistance on component efliciencies £, Simulation of Run M46, £ ,=20mm?*s .

question is also to be found in Figure 3. As Foy is
increased beyond 0.03, though — Q,,/0,, increases, there
is a simultaneous decrease in Q,,. By a detailed exami-
nation of the values of Q,, and — Q,,/0,, it 1s found that
the increase in —Q,,/Q,, is slower than the correspond-
ing decrease in Q,,. The efficiency ES" therefore increases
beyond Fo,=0.03. At Fo,=0.135 the efficiency
E$' = 0, a manifestation of the phenomenon of diffusion
barrier**. Below Fo, = 0.135, tert butanol may be said
to exhibit the phenomenon of reverse diffusion**. For
increasing values of Foy;, the matrix [Q] tends to the null
matrix [0] and all the efficiencies will tend to unity;

differences in component efficiencies become insignifi-
cant. Summarizing the conclusions of Figure 2, the
influence of Fo,; on EYY is characterized by two regimes;
in the first regime, 0.01 < Fo,; < 0.03, coupling effects
increase in importance and the value of Ef' becomes
increasingly negative. Beyond Fo, = 0.03, the influence
of coupling gradually decreases and tert butanol tends to
exhibit “normal”, binary-like behaviour.

Let us now examine two typical bubble size popu-
lations: (1) small bubbles of 5 mm diameter with a rise
velocity of 0.3ms~! and (2) large bubbles of 12.5 mm
diameter with a rise velocity of 1.5ms '. For a dis-
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persion height A;=75mm (estimated value for the
experimental conditions), the corresponding Fourier
numbers (taking the reference diffusivity value D ;=
20 mm?s~!) are 0.8 and 0.026 respectively. From Figure
2 it can be seen that the coupling effects will be minimal
in a system consisting of small 5 mm bubbles, while for
the 12.5 mm bubble size dispersion a negative efficiency
will be experienced. To the knowledge of the author, this
influence of bubble hydrodynamics has not thus far been
appreciated in the chemical engineering literature. In
actual practice there will be a bubble size distribution
and the contributions of the individual bubble popu-
lations have to be weighted with the factors given by
equation (56). The fast-rising bubble population will
dominate the mass transfer characteristics of the system;
typically this population transports 90% of the vapour
mixture across the tray'"'>. The small bubble population
(say in the 2-5 mm range) do not contribute to the gas
hold-up (and interfacial area) on the tray but this con-
tribution is not wholly effective because this population
transports only about 109/ of the vapour mixture across
the tray. This concept of “‘passive” and ‘‘active” gas
hold-ups is also applicable to the description of bubble
columns operating in the churn-turbulent regime'®*” and
the two-phase theory of fluidized beds'® can be used to
model such systems.

In the foregoing analysis we had assumed that the
transfer process was completely controlled by the re-
sistance in the vapour phase. Let us now examine the
influence of the liquid side resistance on the component
efficiencies, still considéring only Zone II with uniform
bubble sizes. The liquid phase mass transfer coefficient
is calculated using equation (21). Since the contact time
t; is dependent on the rise velocity of the bubbles (cf.
equation (44)), the liquid resistance is dependent on the
particular bubble population assumed. Figure 4 sum-
marises the results of the calculations for E{" and ES' for
the small and large bubbles, 5 and 12.5 mm respectively.
The influence of liquid resistance on the efficiency of
ethanol, EY", follows our normal expectation; there is a
slight resistance offered by 5 mm bubbles and a some-
what larger one offered by 12.5mm bubbles. In both
cases the efficiency Ef' is lowered due to the additional
resistance considered. The situation is quite different
when we consider the effect on tert butanol; for
Foy < 0.15, the influence of the liquid resistance is to
increase the efficiency of tert butanol. This un-binary like
effect is due to the fact that in this particular Fourier
regime, coupling effects reduce E$’ to low, negative,
values and the effect of the liquid of the consideration of
an additional mass transfer resistance in the liquid phase
is to reduce the coupling effect (there are smaller
differences in the pair B j in the liquid phase than in the
corresponding vapour phase B ). The net result of
reduced coupling, quantified by a smaller —Q,,/Q,,, is
to increase ES'. Beyond Foy = 0.2, tert butanol exhibits
“normal” behaviour and the liquid resistance serves to
reduce the component efficiency.

Concluding Remarks

We have developed a model for the calculation of
point efficiencies in multicomponent distillation from
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basic froth properties and diffusivity data on the binary
pairs in the mixture. Some interesting differences be-
tween the transfer behaviour of multicomponent systems
and a simple binary system have been underlined; such
differences have hitherto not been mentioned in the
chemical engineering literature. In the discussions we
have pointed out the strong influence of the froth
hydrodynamics on the extent of diffusional coupling
exhibited by the system. We strongly believe that multi-
component distillation efficiencies can only be reason-
ably predicted on the basis of a proper hydrodynamic
picture of the tray behaviour; in this connection we
would suggest that “black box” type mass transfer
models are unlikely to be adequate.

Though the model development has catered for non-
equimolar transfer possibilities, caused by differences
in component molar latent heats of vaporization, this
aspect of the model has not been tested against experi-
mental data; the system studied: ethanol-tert butanol-
water displays equimolar transfer behaviour. Our pre-
vious calculations®?! have indicated that non-equimolar
contributions could be important in some cases.

McEwan and ‘Darton! state in their survey article
“There is an extensive theoretical and academic litera-
ture on multi-component efficiency, and the gap between
this and practicable design methods is one which
urgently needs bridging.”” With the present publication,
we have tried to bridge this “gap” and hope that the
encouraging results obtained will spur the further devel-
opment of the models and incorporation into routine
design procedures for industrial columns.

SYMBOLS USED

interfacial area per unit volume of froth [m?m—3)

a
a’ interfacial area per unit volume of dispersed gas [m®>m—?]
A active bubbling area of tray [m?)

b, “intercepts” in the linearized vapour-liquid equilibrium

relationship [—]

B number of bubble size populations [—]

[B] inverted matrix of diffusion coefficients with elements B;
given by equations (9) and (10) [m~25s]

¢ mixture molar density [kmol m~?]

d diameter of gas jet of spherical bubble [m]

b Maxwell-Stefan diffusion coefficient of pair i—j in multi-

component mixture fm?s~]

D reference value of Maxwell-Stefan diffusivity; taken as
20 mm?s~! in the calculations for the system ethanol—tert
butanol-water [m?s™]

EYY Murphree point efficiency (vapour phase) for component i
]

S fraction of vapour entering bulk froth free zone which is
transported by the kth bubble size population [—]

Fo Fourier number [—]

G; molar flow rate of component i in the vapour phase
[kmols—1]

h distance parameter measured from tray floor [m]

hy height of formation zone [m]

hy height of bulk froth zone [m]
partial molar enthalpy of component i [J kmol—]

n identity matrix with elements &, [—]

Jm roots of Jy(j,) =0 [—]

J() zero order Bessel function

mass transfer coefficient of pair i—j in multicomponent
mixture [ms™']

[K*q] Diagonal matrix of equilibrium K-values [—]}
n number of components in multicomponent mixture [—]
N, molar flux of component i across vapour-liquid interface

[kmolm~2s~1]
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N, mixztur? molar flux across vapour-liquid interface [kmol
m~?s~1]

P? vapour pressure of component i [Pa]

P, total system pressure [Pa] ]

0] matrix defined by equations (59)-(61) [—]

R gas constant [8314.4 T kmol 'K~}

[R] matrix of inverted mass transfer coefficients [m~"'s}

t contact time between vapour and liquid phases [s]

T absolute temperature [K]

U, superficial vapour velocity based on active bubbling area
fms~']

Uy absolute velocity of gas in jet in Zone I [ms~]

Unx bubble rise velocity of kth population in Zone II fms~']

x; mole fraction of component i in bulk liquid [—]

Xie mole fraction of component i at the interface in the liquid
phase [—]

¥ mole fraction of component i in bulk vapour [—]

Yie mole fraction of component i at the interface in the vapour
phase [—]

y¥ vapour composition in equilibrium with the bulk liquid
phase [—]

Ve composition of vapour entering tray [—]

yo composition of vapour leaving tray [—]

Aye composition driving force = y* — yp [—]

Ayy composition driving force = y¥* — y; [—]

Greek Letters

1:3] bootstrap matrix with elements given by equation (7) [—]

% activity coefficient of component i in liquid phase [—]

[r] matrix of thermodynamic factors defined by equation (16)
]

Oy Kronecker delta [—]

€ gas hold-up, i.e. fraction of dispersion occupied by gas [—]

A molar latent heat of vaporization of component i {J kmol~}

I molar chemical potential of species i [J kmol~']

Matrix Notation i

) n — 1 dimensional column matrix

[} n —1 x n — 1 dimensional square matrix

[ inverted matrix

Subscripts

I referring to Zone I

14 referring to Zone II

ILk referring to the kth bubble population in Zone II

e referring to the interface

E entering vapour mixture

L vapour mixture leaving tray

n nth cogaponent

T,p gradient evaluated at comstant temperature and pressure

t referring to total mixture

Superscripts

1 liquid phase

v vapour phase

ov overall vapour phase parameter

0 infinite dilution parameter

*

h oW

overbar refers to composition averaged property
equilibrium value

REFERENCES

. McEwan, M. W. and Darton, R. C. 1980, J Separ Proc Technol,

13): 1.

. Krishna, R., Martinez, H. F., Sreedhar, R/, and Standart, G. L.,

1977, Trans Inst Chem Engrs, 55: 178.

. Walter, J. F. and Sherwood, T. K., 1941, Ind Eng Chem, 33: 493.
. Toor, H. L., 1957, AIChEJ, 3: 198.
. Toor, H. L., and Burchard J. K., 1960, AIChEJ, 6. 202.

9.

“10.

13.
16.
17.

18.
19.

20.

21.
22.

23.
24,
25.
26.

6. Toor, H. L., 1964, AIChEJ, 10: 448, 460.
7.
8. Krishna, R. and Standart, G. L., 1979, Chem. Engng Commun, 3:

Toor, H. L., 1964, 4AIChEJ, 10: 545.

201.

Krishna, R., Salomo, R. M. and Rahman, M. A., 1981, Trans Inst
Chem Engrs, 59: 44. )

Burghardt, A., Warmuzinski, K., Buzek, J. and Pytlik, A., 1983,
The Chemical Engineering Journal, 26: 71.

. Lockett, M. J. and Plaka, T., 1983, Chem Eng Res Des, 61: 119.
. Lockett, M. J. and Ahmed, L. S., 1983, Chem Eng Res Des, 61: 110.
. Lockett, M. J., Kirkpatrick, R. D. and Uddin, M. S., 1979, Trans

Inst Chem Engrs, 57: 25.

. Locket, M. J. and Uddin, M. S., 1980, Trans Inst Chem Engrs, 58:

166.

Hofer, H., 1983, German Chemical Engineering, 6: 113.

van Deemter, J. J., 1961, Chem Engng Sci, 13: 143,

Krishna, R., 1981, Design and Scale-Up of Gas Fluidized Bed
Reactors, Chapter in Multiphase Chemical Reactors. Volume II—
Design Methods, edited by A. E. Rodrigues, J. M. Calo and N. H.
Sweed, NATO Advanced Study Institute Series E—No. 52
(Sijthoff and Noordhoff, Alphen aan den Rijn).

Krishna, R., 1981, De Ingenieur, 93 (23 April): 8 (in Dutch).
Krishna, R., 1981, Interphase Mass Transfer Models, Chapter in
Multiphase Chemical Reactors. Volume I— Fundamentals, edited
by A. E. Rodrigues, J. M. Calo and N. H. Sweed, NATO
Advanced Study Institute Series E—No. 51 (Sijthoff and
Noordhoff, Alphen aan den Rijn). )

Krishna, R. and Standart, G. L., 1976, Letts Heat Mass Transfer,
3. 173.

Krishna, R., 1977, Chem Engng Sci, 32: 1197.

King, C. J., 1980, Separation Processes, 2nd Edition (McGraw-
Hill, New York).

Reid, R. C., Prausnitz, J. M. and Sherwood, T. K., 1977, The
Properties of Gases and Liquids, 3rd Edition (McGraw-Hill, New
York).

Vignes, A., 1966, Ind Eng Chem Fundamentals, 5: 189.
Bandrowski, J. and Kubaczka, A., 1982, Chem Engng Sci, 37:
1309.

Cussler, E. L., 1976, Multicomponent Diffusion (Elsevier, Am-
sterdam).

. Kosanovich, G. M., 1975, Ph.D. Dissertation (State University of

New York at Buffalo, New York).

. Burchard, J. K. and Toor, H. L., 1962, J Phys Chem, 66: 2015.
. Prausnitz, J. M., Anderson, T. F., Grens, E. A., Eckert, C. A.,

Hsieh, R. and O’Connell, J. P., 1980, Computer Calculations for
Multicomponent Vapor—liquid and Liquid-Liquid- Equilibria
(Prentice-Hall, Englewood Cliffs, New Jersey).

. Fredenslund, A., Gmehling, J. and Rasmussen, P., 1977, Vapor—

Liquid Equilibria using UNIFAC—A Group Contribution Method
(Elsevier, Amsterdam).

. Krishna, R., 1977, Chem Engng Sci, 32: 659.

. Krishna, R., 1979, Chem Engng Commun, 3: 29.

. Krishna, R., 1979, Letts Heat Mass Transfer, 6: 439.

. Krishna, R., 1981, Chem Engng Sci, 36: 219.

. Stewart, W. E. and Prober, R., 1964 Ind Eng Chem Fundamentals,

3: 224,

. Crank, J., 1975, The Mathematics of Diffusion, 2nd Edition

(Clarendon Press, Oxford).

. Vermeer, D. J. and Krishna, R., 1981, Ind Eng Chem Proc Des

Dev, 20: 475.

ADDRESS

Correspondence concerning this paper should be addressed to Dr R.
Krishna, Refining Division, Indian Institute of Petroleum, Dehra Dun
248 005, India.

The manuscript was received 29 August 1984 and accepted for
publication after revision 25 January 1985

Chem Eng Res Des, Vol. 63, September 1985

<4

e




